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Abstract
An analytical expression for the contact value of the density of n-component
mixtures under gravity has been obtained by means of the inhomogeneous
pressure equation within fluids. The gravity-induced liquid–solid transition
temperature has been estimated for hard spheres, Lennard-Jones spheres, and
binary hard sphere mixtures and has been compared with those of other
approximations. The density functional approximation based on the weighted
density has also been used to calculate the density profile and the pressure of
hard spheres and Lennard-Jones spheres at the liquid–solid interface.

Sedimentation of model particles under gravity has long been of scientific interest since
the early work of Jean Perrin. Model particles in a suspension under gravity show spatial
inhomogeneities due to the symmetry breaking induced by the gravitational field. A few years
ago, Biben et al [1] had shown through Monte Carlo simulations and the weighted-density
approximation (WDA) that the hard spheres can become unstable in the presence of gravity.

Recently, Hong and co-workers [2, 3] have studied the sedimentation of hard spheres
under gravity and argued that there exists a critical temperature at which the density at the
bottom layer becomes the close-packed density. They have defined the transition temperature
Tc to be the temperature at which the local volume density at the bottom within a thickness of
one particle diameter reaches the close-packed value, and identified it as a function of external
parameters, i.e.,

kBTc = mgσµφc

µ0
(1)

where µφc = σ d−1
∫ ∞
σ/2 ρ(z) dz is the number of particles piled up over the area σ d−1 of the

bottom wall, m the mass of hard spheres, g the gravitational strength, σ the diameter, d the
dimension, kB the Boltzmann’s constant, µ0 and φc the constants that reflect the particular
manner in which a system packs upon condensing, and ρ(z) the density profile in a gravita-
tional field [3]. They have also argued that if the temperature is lowered below Tc, the first layer
should remain at the close-packed state, while the particles at the second layer try to compact
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and crystallize. On the other hand, Levin [4] has proposed a simple argument to account for
the crystallization of hard spheres under the action of a gravitational field: the first bottom
layer will crystallize when the pressure at the bottom reaches the bulk coexistence pressure
corresponding to the structural fluid–solid transition of hard spheres. Here, one interesting
point is that the contact value of the density of a fluid under gravity is the same as the pressure
at the bottom. This implies that the transition temperature is closely related to the pressure
within a fluid, and the transition temperature can be defined as the contact density at the bottom.
Another interesting point is how to extend equation (1), which was identified as a function
of external parameters, to systems of n-component mixtures in the gravitational field, and to
apply it to explain gravity-induced segregation such as the Brazil nut type segregation [5, 6].

In this paper, we will derive the inhomogeneous pressure equation within fluids in the
presence of gravitation, and show that at the critical temperature µ0 is exactly the same as the
contact density ρ(z = σ/2)σ d (or the pressure β Pc(z = σ/2)σ d) at the bottom of the system.
We calculate the transition temperature of hard spheres and Lennard-Jones spheres based on
Levin’s argument for the crystallization of fluids. The density functional theory in the simplified
WDA is used to calculated the density profiles and the pressure of hard spheres and Lennard-
Jones spheres at the liquid–solid interface. In addition, we extend the contact-value theorem
to n-component mixtures under gravity. We apply it to study the gravity-induced liquid–solid
transition. Finally, we briefly discuss the segregation of binary hard sphere mixtures under
gravity.

The static pressure P(z) within a fluid in the action of a gravitational field satisfies
dβ P(z)

dz
= −βmgρ(z), (2)

and it can be integrated

β P(z) = β P(z = σ/2) − βmg
∫ z

σ/2
ρ(z′) dz ′, (3)

where β = 1/kBT is the inverse temperature and P(z = σ/2) is the pressure when the centre
position of particles (z = 0) is located at the bottom [8]. It is known that P(z = σ/2) is the
kinetic pressure which arises from the momentum transferred per unit time to the bottom layer.
For the gravitational field, P(z) decreases rapidly and approaches zero as z tends to infinity
(z → ∞). Then, equation (3) yields

β P(z = σ/2) = βmg
∫ ∞

σ/2
ρ(z′) dz ′. (4)

To obtain the relationship between the contact value of the density and the pressure of a
system at the bottom, we consider the force balance on a slab of fluids with thickness z adjacent
to a wall at z = 0. The pressure P(z) is given by

β P(z) = −
∫ z

σ/2

∂βuext(z ′)
∂z′ ρ(z′) dz ′, (5)

where uext(z) is the potential due to the wall at the bottom [7].
If the bottom is a hard wall and has an additional gravitational interaction with the system

particles such as

βuext(z) =
{

∞, z < σ/2,

βmgz, z > σ/2,
(6)

equation (5) becomes

ρ(z = σ/2) = βmg
∫ ∞

σ/2
ρ(z′) dz ′, (7)
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since ∂uext(z)/∂z = δ(z −σ/2)−βmg and P(z) rapidly approaches zero as z tends to infinity.
Here, ρ(z = σ/2) is the contact density of fluids at the bottom and δ(z) is Dirac’s delta function.
In this case, the dimensionless gravitational strength (or Peclet number), αgr, is given by

αgr = mgσ

kBT
= ρ(z = σ/2)σ d

σ d−1
∫ ∞
σ/2 ρ(z′) dz ′ . (8)

This describes the ratio of the potential energy gain to the thermal energy kBT of a particle.
Finally, equations (4) and (7) yield the simple relationship between the pressure at the

bottom and the contact value of the density,

β P(z = σ/2) = ρ(z = σ/2), (9)

and the pressure equation (3) becomes

β P(z) = ρ(z = σ/2) − βmg
∫ z

σ/2
ρ(z′) dz ′. (10)

We may easily show that for a planar hard wall (z → ∞) the contact value of the density is
fixed by the wall theorem, i.e., β P = ρ(z = σ/2), where P is the bulk pressure, irrespective
of whether the phase is liquid or solid [8].

To determine the transition temperature for crystallization, let us consider Levin’s
argument, which was introduced to explain the crystallization of hard spheres [4]. Following
this argument, the first bottom layer will crystallize when β P(z = σ/2) at the bottom reaches
the (bulk) pressure at coexistence, i.e.,

kBTc = mg
∫ ∞
σ/2 ρ(z′) dz ′

ρc(z = σ/2)
= mg

∫ ∞
σ/2 ρ(z′) dz ′

β Pc
, (11)

where Pc and ρc(z = σ/2) are the pressure and the contact density at coexistence, respectively.
Equation (11) indicates that the transition temperature can be defined as the contact density at
the bottom as well as the bulk pressure at coexistence. Then, equations (1) and (11) show that

µ0 = β Pcσ
d = ρc(z = σ/2)σ d . (12)

For the one-dimensional (1D) hard-rod system, we can show that the condensation
transition occurs at zero temperature (Tc = 0) becauseβ Pc has a singularity at the close-packed
density (ρcσ = 1) [8, 9]. For the two-dimensional (2D) hard-disc system, the solid–liquid
coexistence occurs when β P/ρcp (where ρcp is the close-packed density) is the dimensionless
pressure at coexistence. Here, we have used β Pcσ

2 ≈ 8.08 × 2/
√

3 obtained from the Monte
Carlo simulation results of Hoover and Rhee [10]. Then, the critical temperature Tc at which the
first bottom layer will crystallize becomes kBTc ≈ √

3mgσ 2
∫ ∞
σ/2 ρ(z′) dz ′/(8.08 × 2). In this

case, µ0 ≈ 8.08×2/
√

3 ≈ 9.33. If the temperature is lowered further, the additional fluid layer
will solidify and a growing crystal will coexist with the diminishing fluid phase. However, the
WDA based on the simple weighting function gives µ0 ≈ 4.31 [3, 11], which is smaller than
µ0 ≈ 9.33. It is noted that Hong and co-workers have defined the condensation temperature
to be that temperature at which the local average density,

∫ σ

0 ρ(z) dz, reaches the close-packed
value. For the three-dimensional (3D) hard sphere system, the transition temperature is given
by kBTc ≈ mgσ 3

∫ ∞
σ/2 ρ(z′) dz ′/(8.23 × √

2) since β Pcσ
3 ≈ 8.23 × √

2 ≈ 11.69. (At the

fluid–solid transition, the coexisting fluid/solid densities are ρlσ
3 ≈ 0.941 and ρsσ

3 ≈ 1.041,
respectively [10]). In this case, µ0 ≈ 11.69, while the WDA theory [3] yields µ0 ≈ 7.32. For
the Lennard-Jones system, computer simulation data [14] were used to determine the transition
temperature. The calculated results are presented in table 1. The transition temperature
decreases with increasing the temperature T ∗ = kBT/ε. This shows that at low temperature
the Lennard-Jones fluid will easily solidify.
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Table 1. Transition temperature T ∗
c /mgσµφc for Lennard-Jones spheres. The reduced melting

pressure (Pcσ
3/ε) and density (ρsσ

3) have been taken from computer simulation data [14].

T ∗ ≡ kBT/ε ρ∗ ≡ ρsσ
3 P∗ ≡ Pcσ

3ε T ∗
c /mgσµφc µ0

0.75 0.973 0.67 1.12 0.89
1.15 1.024 5.68 0.20 4.94
1.35 1.053 9.00 0.15 6.67
2.74 1.150 32.2 0.085 11.75

In density functional theory, the density profile, ρ(z), of fluids in the presence of a
gravitational field is determined by the Euler–Lagrange minimization for the Helmholtz free
energy per unit area, i.e., δF[ρ]/δρ(z) = µch − uext(z), where µch represents the chemical
potential. The density profile [8] becomes, after some manipulations,

ρ(z) =
{

ξ exp[−βmgz + c(1)(z; [ρ])], z > σ/2,

0, z < σ/2,
(13)

where the fugacity ξ = exp(βµch)/λ
3 is chosen to satisfy the normalization condition, i.e.,

ξ = ∫ ∞
σ/2 ρ(z) dz/

∫ ∞
σ/2 exp[−βmgz ′ + c(1)(z ′; [ρ])] dz′. Here, c(1)(z; [ρ]) is the one-particle

direct correlation function (DCF) and is defined as the functional derivative of the excess free
energy Fex[ρ] of the system with respect to the density such as c(1)(z; [ρ]) ≡ −δβ Fex[ρ]/δρ(z).
Then, equation (7) yields

exp[c(1)(z = σ/2; [ρ])] = βmg
∫ ∞

σ/2
exp[−βmgz ′ + c(1)(z ′; [ρ])] dz′, (14)

and the dimensionless gravitational strength αgr is given by

αgr = σ exp[c(1)(z = σ/2; [ρ])]∫ ∞
σ/2 exp[−βmgz′ + c(1)(z ′; [ρ])] dz′ . (15)

This is an exact relation which applies for fluids in the presence of gravity, and it can be
very useful for checking numerical accuracy in the calculation of the density profile and the
inhomogeneous pressure of fluids.

The WDA theory [3, 11] based on the simple weighting function ω(r) = 3/4πσ 3θ(σ −r)

is used to calculate the density profile ρ(z)σ 3 and the pressure β P(z)σ 3 of hard spheres under
gravity, where θ(r) is the Heaviside step function. The calculated density profile and the
pressure for µ = 4 (µ = ∫ ∞

σ/2 ρ(z) dz) are presented in figure 1. The transition temperature

was taken to be that temperature at which β P(z = σ/2)σ 3 = ρc(z = σ/2)σ 3 ≈ 11.69.
At the transition temperature, αgr = 2.66. It is noted here that the transition temperature is
slightly different from that of Both and Hong, but its difference is small [3]. For T > Tc,
there is layering near the bottom wall due to packing effects. For T < Tc, however, a strong
oscillation appears which is a clear indication of the crystalline phase. The peak-to-peak
density oscillation is slightly greater than the hard sphere diameter, while the peak-to-peak
pressure corresponding to the solid phase is almost the same as the hard sphere diameter.
The pressure diagram shows the discontinuous properties at the matching density such as the
layering transition of fluids in the confined systems [12]. The number of layers in the solid
phase can be determined by comparing β P(z) with β Pcσ

3 ≈ 11.69. Figure 1(b) shows the
two crystal layers. The average density, represented as the solid circles, also shows the two
crystal layers. The overall picture indicates that the WDA theory can be applied to explain
the condensation of hard spheres sufficiently well even for the high gravitational field. When
the temperature is reduced further, it is expected that the additional fluid layer will solidify.
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Figure 1. Density profile (ρ(z)σ 3: solid curves) and pressure (β P(z)/σ 3: dotted curves) of hard
spheres as a function of the dimensionless length z/σ ; (a) T > Tc (µ = 4 and αgr = 2.41),
(b) T < Tc (µ = 4 and αgr = 4.58). The solid circles are average values of the density peaks.

Figure 2 shows the calculated density profile and the pressure of Lennard-Jones spheres at the
reduced temperature T ∗ ≡ kBT/ε = 1.35 (µ = 4). According to the prescription of Week,
Chandler and Andersen (WCA) the Lennard-Jones potential was divided into a repulsive part
and an attractive contribution. The equivalent hard sphere diameter corresponding to the
repulsive contribution was chosen according to the Barker–Henderson prescription [13]. A
mean-field approximation was used to calculate the excess free energy Fatt[ρ] for the attractive
part of interaction potentials. Here, the transition temperature was taken to be the temperature
at which β P(z = σ/2)σ 3 = P∗/T ∗ ≈ 6.67 [14]. In this case, αgr = 1.92 at the critical
temperature Tc. As can be seen in this figure, the strong oscillation appears for T < Tc. The
peak-to-peak pressure corresponding to the solid phase is almost the same as the hard sphere
diameter σ . Figure 2(b) also shows the two crystal layers.

The same argument can be extended to n-component mixtures. We assume that the bottom
is the hard wall and that it has the additional gravitational interactions with the system particles

βui
ext(z) =

{
∞, z < σi/2,

βmi gz, z > σi/2.
(16)

In this case, the pressure at height z is given by

β P(z) =
n∑

i=1

ρi (z = σi/2) −
n∑

i=1

βmi g
∫ z

σi /2
ρi (z

′) dz ′. (17)

Then, equation (17) becomes
n∑

i=1

ρi(z = σi/2) =
n∑

i=1

βmi g
∫ ∞

σi /2
ρi (z

′) dz ′, (18)

since β P(z) → 0 as z → ∞. For a planar hard wall, equation (17) becomes β P =∑n
i=1 ρi (z = σi/2), where P is the bulk pressure of a n-component mixture. This is the
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Figure 2. Density profile (ρ(z)σ 3: solid curves) and pressure (β P(z)/σ 3: dotted curves) of
Lennard-Jones spheres (T ∗ = 1.35) as a function of the dimensionless length z/σ ; (a) T > Tc
(µ = 4 and αgr = 1.26), (b) T < Tc (µ = 4 and αgr = 2.32). The solid circles are average values
of the density peaks.

well-known contact-value theorem [8]. Comparison with equations (1) and (18) suggests that
the transition temperature for n-component mixtures can be defined as

kBTc =
∑n

i mi gσiµiφc

µ0
(19)

where µiφc = σ d−1
∫ ∞
σi /2 ρi (z) dz.

If we take the pressure at the bottom as the bulk coexistence pressure corresponding to
the fluid–solid transition, the transition temperature becomes

kBTc =
∑n

i miσi g
∫ ∞
σi /2 ρi(z ′) dz ′

β Pc
=

∑n
i miσi g

∫ ∞
σi /2 ρi(z ′) dz ′∑n

i=1 ρci (z = σi/2)
, (20)

in which ρci (z = σi/2) is the contact density of an i th component fluid at the bottom.
Equation (20) shows that the transition temperature of n-component mixtures is determined to
be the temperature at which β Pc = ∑n

i=1 ρci(z = σi/2).
We can extend the density profile equation in equation (13) to systems of n-component

mixtures. In this case, the density profile ρi (z) is given by

ρi (z) =
{

ξi exp[−βmi gz + c(1)
i (z; [ρ])], z > σi/2,

0, z < σi/2,
(21)

where ξi = exp(βµi
ch)/λ

3
i and c(1)

i (z; [ρ]) is the one-particle DCF for the i th-component fluid.
Then, equation (21) satisfies

exp[c(1)

i (z = σi/2; [ρ])] = βmi g
∫ ∞

σi /2
exp[−βmi gz′ + c(1)

i (z ′; [ρ])] dz′. (22)
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Figure 3. Transition temperature Tc of binary hard sphere mixtures as a function of the
concentration of large spheres x = ρ2/(ρ1 + ρ2); (a) σ1/σ2 = 0.95, (b) σ1/σ2 = 0.9.

For binary (n = 2) mixtures, equation (20) simply becomes

kBTc = m2σ2gµ2φc

β Pcσ
d
2

(
1 +

m1µ1σ
d−1
2

m2µ2σ
d−1
1

)
. (23)

Equation (23) shows that the transition temperature increases linearly with increasing mass
ratio m1/m2, while it decreases quadratically with increasing particle diameter ratio σ1/σ2.
When we follow the convention x = ρ2/(ρ1 + ρ2), β Pc depends on the particle diameter ratio
σ1/σ2 and the concentration x of a fluid. Then, µ0 becomes

µ0 = β Pcσ
d
2 =

n∑
i=1

ρci(z = σi/2)σ d
2 . (24)

Figures 3 and 4 show the transition temperature for binary hard sphere mixtures. Here,
the computer simulation results done by Kranendonk and Frenkel [15], in which data can be
scaled in order to match the transition parameter in the one-component limitation (x = 0 and 1),
were used to evaluate the transition temperature kBTc/m2σ2gµ2φc = 1/µ0. All lengths were
measured in units of larger particle diameter σ2. The calculated results show that the transition
temperature decreases with increasing x-values or the concentration of larger particles. At the
size ratio σ1/σ2 = 0.9 in figure 3, Tc is a non-monotonic function of x . The effect is actually
more pronounced for large size differences, since the transition temperature is closely related
to the bulk pressure at coexistence [15].

In summary, we have derived an analytical expression for the contact value of the density
of n-component mixtures under gravity. We have here defined the condensation temperature
to be the temperature at which the pressure at the bottom reaches the liquid/solid coexistence
pressure and determined the critical temperature for the crystallization of hard spheres and
Lennard-Jones spheres. The calculated result suggests that the simple WDA theory can be
applied to explain the condensation of hard spheres well enough even for the high gravitational
field.
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Figure 4. Transition temperature Tc of binary hard sphere mixtures (x = 0.9) as a function of
m2µ2/m1µ1.

As a comment, Hong et al [5] have recently claimed that following Rosato et al [16] the
crossover condition of gravity-induced segregation for binary hard spheres is given when the
ratio of two critical temperatures is equal to the volume ratio of the two particles, which leads to
the relationship m2/m1 = (σ2/σ1)

d−1. They have introduced the ratio of the centre of mass of
the two spheres as the factor to quantify the segregation; 〈zi 〉 = ∫ ∞

σi /2 zρi (z) dz/
∫ ∞
σi /2 ρi(z) dz.

However, we can show that the crossover condition can be obtained from the pressure
equation (18) by choosing a simple condition for the segregation. Specifically, ρ1(z = σ1/2) <

ρ2(z = σ2/2) indicates the condition for the Brazil nut type segregation, ρ1(z = σ1/2) =
ρ2(z = σ2/2) for the crossover, and ρ1(z = σ1/2) > ρ2(z = σ2/2) for the reverse Brazil nut
type segregation [17].

In the simulation studies investigated by Dzubiella et al [18] for the sedimentation of the
star polymer with re-entrant melting behaviour, they observed the phase transition between
the fluid and the fluid with the intercalated solid below the critical gravitational strength, and
confirmed that this transition comes from the long-ranged tail in the interaction potential. On
the other hand, Hong et al [5] have used a variational method which is based on the local
density approximation (LDA) to study the binary hard sphere segregation under gravity. They
have shown that the LDA yields the excited granular materials under gravity, such as the
Brazil nut problem. However, it is generally known that the LDA fails to account for the
strong density oscillation near the bottom. Thus, it would be interesting to apply the pressure
equation employed in this work for n-component mixtures to check the solidification of the
star polymer solution and the segregation of binary hard sphere mixtures under gravity. We
will study these problems in the near future.
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